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2 − α = dν , (7.2.18)

which also contains the spatial dimension d. According to equations (7.2.6),
(7.2.9), (7.2.15), and (7.2.18), all the critical exponents are determined by
two independent ones.

For the two-dimensional Ising model one finds the exponents of the cor-
relation function, ν = 1 and η = 1/4, from the exponents quoted following
Eq. (6.5.31d) and the scaling relations (7.2.15) and (7.2.18).

7.3 The Renormalization Group

7.3.1 Introductory Remarks

The term ‘renormalization’ of a theory refers to a certain reparametriza-
tion with the goal of making the renormalized theory more easily dealt
with than the original version. Historically, renormalization was developed by
Stückelberg and Feynman in order to remove the divergences from quantum-
field theories such as quantum electrodynamics. Instead of the bare para-
meters (masses, coupling constants), the Lagrange function is expressed in
terms of physical masses and coupling coefficients, so that ultraviolet diver-
gences due to virtual transitions occur only within the connection between
the bare and the physical quantities, leaving the renormalized theory finite.
The renormalization procedure is not unique; the renormalized quantities can
for example depend upon a cutoff length scale, up to which certain virtual
processes are taken into account. Renormalization group theory studies the
dependence on this length scale, which is also called the “flow parameter”.
The name “renormalization group” comes from the fact that two consecutive
renormalization group transformations lead to a third such transformation.

In the field of critical phenomena, where one must explain the observed
behavior at large distances (or in Fourier space at small wavenumbers), it is
reasonable to carry out the renormalization procedure by a suitable elimina-
tion of the short-wavelength fluctuations. A partial evaluation of the partition
function in this manner is easier to carry out than the calculation of the com-
plete partition function, and can be done using approximation methods. As
a result of the elimination step, the remaining degrees of freedom are subject
to modified, effective interactions.

Quite generally, one can expect the following advantages from such a
renormalization group transformation:

(i) The new coupling constants could be smaller. By repeated applications of
the renormalization procedure, one could thus finally obtain a practically
free theory, without interactions.

(ii) The successively iterated coupling coefficients, also called “parameter
flow”, could have a fixed point, at which the system no longer changes
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under additional renormalization group transformations. Since the elimi-
nation of degrees of freedom is accompanied by a change of the underlying
lattice spacing, or length scale, one can anticipate that the fixed points
are under certain circumstances related to critical points. Furthermore, it
can be hoped that the flow in the vicinity of these fixed points can yield
information about the universal physical quantities in the neighborhood
of the critical points.

The scenario described under (i) will in fact be found for the one-dimensional
Ising model, and that described under (ii) for the two-dimensional Ising
model.

The renormalization group method brings to bear the scale invariance in
the neighborhood of a critical point. In the case of so called real-space trans-
formations (in contrast to transformation in Fourier space), one eliminates
certain degrees of freedom which are defined on a lattice, and thus carries out
a partial trace operation on the partition function. The lattice constant of the
resulting system is then readjusted and the internal variables are renormal-
ized in such a manner that the new Hamiltonian corresponds to the original
one in its form. By comparison, one defines effective, scale-independent cou-
pling constants, whose flow behavior is then investigated. We first study the
one-dimensional Ising model and then the two-dimensional. Finally, the gen-
eral structure of such transformations will be discussed with the derivation
of scaling laws. A brief schematic treatment of continuous field-theoretical
formulations will be undertaken following the Ginzburg–Landau theory.

7.3.2 The One-Dimensional Ising Model, Decimation
Transformation

We will first illustrate the renormalization group method using the one-
dimensional Ising model, with the ferromagnetic exchange constant J in zero
applied field, as an example. The Hamiltonian is

H = −J
∑

l

σlσl+1 , (7.3.1)

where l runs over all the sites in the one-dimensional chain; see Fig. 7.4. We
introduce the abbreviation K = J/kT into the partition function for N spins
with periodic boundary conditions σN+1 = σ1,

ZN = Tr e−H/kT =
∑

{σl=±1}
eK

P
l σlσl+1 . (7.3.2)

The decimation procedure consists in partially evaluating the partition func-
tion, by carrying out the sum over every second spin in the first step. In
Fig. 7.4, the lattice sites for which the trace is taken are marked with a cross.
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Fig. 7.4. An Ising chain; the trace is carried out over all the lattice points which
are marked with a cross. The result is a lattice with its lattice constant doubled

A typical term in the partition function is then∑
σl=±1

eKσl(σl−1+σl+1) = 2 coshK(σl−1 + σl+1) = e2g+K′σl−1σl+1 , (7.3.3)

with coefficients g and K ′ which are still to be determined. Here, we have
taken the sum over σl = ±1 after the first equals sign. Since coshK(σl−1 +
σl+1) depends only on whether σl−1 and σl+1 are parallel or antiparallel, the
result can in any case be brought into the form given after the second equals
sign. The coefficients g and K ′ can be determined either by expansion of the
exponential function or, still more simply, by comparing the two expressions
for the possible orientations. If σl−1 = −σl+1, we find

2 = e2g−K′
, (7.3.4a)

and if σl−1 = σl+1, the result is

2 cosh2K = e2g+K′
. (7.3.4b)

From the product of (7.3.4a) and (7.3.4b) we obtain 4 cosh2K = e4g, and
from the quotient, cosh 2K = e2K′

; thus the recursion relations are:

K ′ =
1
2

log cosh 2K (7.3.5a)

g =
1
2
(
log 2 + K ′) . (7.3.5b)

Repeating this decimation procedure a total of k times, we obtain from
(7.3.5a,b) for the kth step the following recursion relation:

K(k) =
1
2

log
(
cosh 2K(k−1)

)
(7.3.6a)

g(K(k)) =
1
2

log 2 +
1
2
K(k) . (7.3.6b)

The decimation produces another Ising model with an interaction between
nearest neighbors having a coupling constant K(k). Furthermore, a spin-
independent contribution g(K(k)) to the energy is generated; in the kth step,
it is given by (7.3.6b).

In a transformation of this type, it is expedient to determine the fixed
points which in the present context will prove to be physically relevant. Fixed
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points are those points K∗ which are invariant with respect to the transfor-
mation, i.e. here K∗ = 1

2 log(cosh 2K∗). This equation has two solutions,

K∗ = 0 (T = ∞) and K∗ = ∞ (T = 0) . (7.3.7)

The recursion relation (7.3.6a) is plotted in Fig. 7.5. Starting with the initial
value K0, one obtains K ′(K0), and by a reflection in the line K ′ = K,
K ′(K ′(K0)), and so forth. One can see that the coupling constant decreases
continually; the system moves towards the fixed point K∗ = 0, i.e. a non-
interacting system. Therefore, for a finite K0, we never arrive at an ordered
state: there is no phase transition. Only for K = ∞, i.e. for a finite exchange
interaction J and T = 0, do the spins order.

Fig. 7.5. The recur-
sion relation for the one-
dimensional Ising model
with interactions between
nearest neighbors (heavy
solid curve), the line K′ =
K (dashed), and the itera-
tion steps (thin lines with
arrows)

Making use of this renormalization group (RG) transformation, we can
calculate the partition function and the free energy. The partition function
for all together N spins with the coupling constant K, using (7.3.3), is

ZN (K) = eNg(K′)ZN
2
(K ′) = eNg(K′)+ N

2 g(K′′)Z N
22

(K ′′) , (7.3.8)

and, after the nth step,

ZN (K) = exp
[
N

n∑
k=1

1
2k−1

g
(
K(k)

)
+ logZ N

2n

(
K(n)

)]
. (7.3.9)

The reduced free energy per lattice site and kT is defined by

f̃ = − 1
N

logZN (K) . (7.3.10)
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As we have seen, the interactions become weaker as a result of the renor-
malization group transformation, which gives rise to the following possible
application: after several steps the interactions have become so weak that
perturbation-theory methods can be used, or the interaction can be altogether
neglected. Setting K(n) ≈ 0, from (7.3.9) we obtain the approximation:

f̃ (n)(K) = −
n∑

k=1

1
2k−1

g
(
K(k)

)
− 1

2n
log 2 , (7.3.11)

since the free energy per spin of a field-free spin-1/2 system without inter-
actions is − log 2. Fig. 7.6 shows f̃ (n)(K) for n = 1 to 5. We can see how
quickly this approximate solution approaches the exact reduced free energy
f̃(K) = − log(2 coshK). The one-dimensional Ising model can be exactly
solved by elementary methods (see problem 6.9), as well as by using the
transfer matrix method, cf. Appendix F.

Fig. 7.6. The reduced
free energy of the one-
dimensional Ising model.
f̃ is the exact free energy,
f̃ (1), f̃ (2), . . . are the ap-
proximations (7.3.11)

7.3.3 The Two-Dimensional Ising Model

The application of the decimation procedure to the two-dimensional Ising
model is still more interesting, since this model exhibits a phase transition
at a finite temperature Tc > 0. We consider the square lattice rotated by 45◦

which is illustrated in Fig. 7.7, with a lattice constant of one.
The Hamiltonian multiplied by β, H = βH, is

H = −
∑
n.n.

Kσiσj , (7.3.12)
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Fig. 7.7. A square spin
lattice, rotated by 45◦. The
lattice sites are indicated
by points. In the decima-
tion transformation, the spins
at the sites which are also
marked by a cross are elimi-
nated. K is the interaction be-
tween nearest neighbors and
L is the interaction between
next-nearest neighbors

where the sum runs over all pairs of nearest neighbors (n.n.) and K = J/kT .
When in the partial evaluation of the partition function the trace is taken
over the spins marked by crosses, we obtain a new square lattice of lattice
constant

√
2. How do the coupling constants transform? We pick out one

of the spins with a cross, σ, denote its neighbors as σ1, σ2, σ3, and σ4, and
evaluate their contribution to the partition function:∑

σ=±1

eK(σ1+σ2+σ3+σ4)σ = elog(2 cosh K(σ1+σ2+σ3+σ4))

= eA′+ 1
2 K′(σ1σ2...+σ3σ4)+L′(σ1σ3+σ2σ4)+M ′σ1σ2σ3σ4 .

(7.3.13)

This transformation (taking a partial trace) yields a modified interaction be-
tween nearest neighbors, K ′ (here, the elimination of two crossed spins con-
tributes); in addition, new interactions between the next-nearest neighbors
(such as σ1 and σ3) and a four-spin interaction are generated:

H ′ =
(
A′ + K ′ ∑

n.N.

σiσj + L′ ∑
”u.n.N.

σiσj + . . .
)
. (7.3.12′)

The coefficients A′,K ′, L′ and M ′ can readily be found from (7.3.13) as func-
tions of K, by using σi

2 = 1, i = 1, . . . , 4 (see problem 7.2):

A′(K) = log 2 +
1
8
{
log cosh 4K + 4 log cosh 2K

}
, (7.3.14)

K ′(K) =
1
4

log cosh 4K , L′(K) =
1
2
K ′(K) (7.3.13′)

M ′(K) =
1
8
{
log cosh 4K − 4 log cosh 2K

}
.

Putting the critical value Kc = J/kTc = 0.4406 (exact result9) into this
relation as an estimate for the initial value K, we find M ′ � L′ ≤ K ′. In
9 The partition function of the Ising model on a square lattice without an external

field was evaluated exactly by L. Onsager, Phys. Rev. 65, 117 (1944), using the
transfer matrix method (see Appendix F.).
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the first elimination step, the original Ising model is transformed into one
with three interactions; in the next step we must take these into account and
obtain still more interactions, and so on. In a quantitatively usable calculation
it will thus be necessary to determine the recursion relations for an extended
number of coupling constants. Here, we wish only to determine the essential
structure of such recursion relations and to simplify them sufficiently so that
an analytic solution can be found. Therefore, we neglect the coupling constant
M ′ and all the others which are generated by the elimination procedure, and
restrict ourselves to K ′ and L′ as well as their initial values K and L. This
is suggested by the smallness of M ′ which we mentioned above.

We now require the recursion relation including the coupling constant L,
which acts between σ1 and σ4, etc. Thus, expanding (7.3.13′) up to second
order in K and taking note of the fact that an interaction L between next-
nearest neighbors in the original Hamiltonian appears as a contribution to
the interactions of the nearest neighbors in the primed Hamiltonian, we find
the following recursion relations on elimination of the crossed spins (Fig. 7.7):

K ′ = 2K2 + L (7.3.15a)

L′ = K2 . (7.3.15b)

These relations can be arrived at intuitively as follows: the spin σ mediates
an interaction of the order of K times K, i.e. K2 between σ1 and σ3, likewise
the crossed spin just to the left of σ. This leads to 2K2 in K ′. The interac-
tion L between next-nearest neighbors in the original model makes a direct
contribution to K ′. Spin σ also mediates a diagonal interaction between σ1

and σ4, leading thus to the relation L′ = K2 in (7.3.15b).
However, it should be clear that in contrast to the one-dimensional case,

new coupling constants are generated in every elimination step. One cannot
expect that these recursion relations, which have been restricted as an ap-
proximation to a reduced parameter space (K,L), will yield quantitatively
accurate results. They do contain all the typical features of this type of re-
cursion relations.

In Fig. 7.8, we have shown the recursion relations (7.3.15a,b)10. Starting
from values (K, 0), the recursion relation is repeatedly applied, likewise for
initial values (0, L). The following picture emerges: for small initial values, the
flux lines converge to K = L = 0, and for large initial values they converge
to K = L = ∞. These two regions are separated by two lines, which meet at
K∗

c = 1
3 and L∗

c = 1
9 . Further on it will become clear that this fixed point is

connected to the critical point.
We now want to investigate analytically the more important properties of

the flow diagram which follows from the recursion relations (7.3.15a,b). As a
10 For clarity we have drawn in only every other iteration step in Fig. 7.8. We will

return to this point at the end of this section, after investigating the analytic
behavior of the recursion relation.
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Fig. 7.8. A flow diagram
of Eq. (7.3.15a,b) (only every
other point is indicated.) Three
fixed points can be recognized:
K∗ = L∗ = 0,K∗ = L∗ = ∞
and K∗

c = 1
3
, L∗

c = 1
9

first step, the fixed points must be determined from (7.3.15a,b), i.e. K∗ and
L∗, which obey K∗ = 2K∗2 + L∗ and L∗ = K∗. These conditions give three
fixed points

(i) K∗ = L∗ = 0, (ii) K∗ = L∗ = ∞, and (iii) K∗
c =

1
3
, L∗

c =
1
9
.

(7.3.16)

The high-temperature fixed point (i) corresponds to a temperature T = ∞
(disordered phase), while the low-temperature fixed point (ii) corresponds to
T = 0 (ordered low-temperature phase). The critical behavior can be related
only to the non-trivial fixed point (iii), (K∗

c , L
∗
c) = (1

3 ,
1
9 ).

That the initial values of K and L which lead to the fixed point (K∗
c , L

∗
c)

represent critical points can be seen in the following manner: the RG trans-
formation leads to a lattice with its lattice constant increased by a factor of√

2. The correlation length of the transformed system ξ′ is thus smaller by a
factor of

√
2:

ξ′ = ξ/
√

2 . (7.3.17)

However, at the fixed point, the coupling constants K∗
c , L

∗
c are invariant, so

that for ξ of the fixed point, we have ξ′ = ξ , i.e. at the fixed point, it follows
that ξ = ξ/

√
2, thus

ξ =

{
∞ or
0 .

(7.3.18)

The value 0 corresponds to the high-temperature and to the low-temperature
fixed points. At finite K∗, L∗, ξ cannot be zero, but only ∞. Calculating
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back through the transformation shows that the correlation length at each
point along the critical trajectory which leads to the fixed point is infinite.
Therefore, all the points of the “critical trajectory”, i.e. the trajectory leading
to the fixed point, are critical points of Ising models with nearest-neighbor
and next-nearest-neighbor interactions.

In order to determine the critical behavior, we examine the behavior of
the coupling constants in the vicinity of the “non-trivial” fixed point; to this
end, we linearize the transformation equations (7.3.15a,b) around (K∗

c , L
∗
c)

in the lth step:

δKl = Kl −K∗
c , δLl = Ll − L∗

c . (7.3.19)

We thereby obtain the following linear recursion relation:⎛⎝δKl

δLl

⎞⎠ =

⎛⎝4K∗
c 1

2K∗
c 0

⎞⎠⎛⎝δKl−1

δLl−1

⎞⎠ =

⎛⎝ 4
3 1

2
3 0

⎞⎠⎛⎝δKl−1

δLl−1

⎞⎠ . (7.3.20)

The eigenvalues of the transformation matrix can be determined from
λ2 − 4

3λ− 2
3 = 0 , i.e.

λ1,2 =
1
3
(2 ±

√
10) =

{
1.7208
−0.3874 .

(7.3.21a)

The associated eigenvectors can be obtained from
`
4 − (2 ±

√
10)
´
δK + 3δL = 0 ,

i.e.

δL = ±
√

10 − 2

3
δK and thus

e1 =

„
1,

√
10 − 2

3

«
and e2 =

„
1,−

√
10 + 2

3

« (7.3.21b)

with the scalar product e1 · e2 = 1
3
.

We now start from an Ising model with coupling constants K0 and L0

(including the division by kT ). We first expand the deviations of the ini-
tial coupling constants K0 and L0 from the fixed point in the basis of the
eigenvectors (7.3.21):(

K0

L0

)
=
(
K∗

c

L∗
c

)
+ c1e1 + c2e2 , (7.3.22)

with expansion coefficients c1 and c2. The decimation procedure is repeated
several times; after l transformation steps, we obtain the coupling constants
Kl and Ll :(

Kl

Ll

)
=

(
K∗

c

L∗
c

)
+ λl

1c1e1 + λl
2c2e2 . (7.3.23)

If the Hamiltonian H differs from H∗ only by an increment in the direction
e2, the successive application of the renormalization group transformation
leads to the fixed point, since |λ2| < 1 (see Fig. 7.9).
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Fig. 7.9. Flow diagram
based on the recursion re-
lation (7.3.22), which is
linearized around the non-
trivial fixed point (FP)

Let us now consider the original nearest-neighbor Ising model with the
coupling constant K0 ≡ J

kT and with L0 = 0, and first determine the critical
value Kc; this is the value of K0 which leads to the fixed point. The condition
for Kc, from the above considerations, is given by(

Kc

0

)
=
(1

3
1
9

)
+ 0 · e1 + c2

(
1

−
√

10+2
3

)
. (7.3.24)

These two linear equations have the solution

c2 =
1

3(
√

10 + 2)
, and therefore Kc =

1
3
+

1
3(
√

10 + 2)
= 0.3979 . (7.3.25)

For K0 = Kc, the linearized RG transformation leads to the fixed point,
i.e. this is the critical point of the nearest-neighbor Ising model, Kc = J

kTc
.

From the nonlinear recursion relation (7.3.15a,b), we find for the critical point
the slighty smaller value Kn.l.

c = 0.3921. Both values differ from Onsager’s
exact solution, which gives Kc = 0.4406, but they are much closer than the
value from molecular field theory, Kc = 0.25.

For K0 = Kc, only c2 �= 0, and the transformation leads to the fixed
point. For K0 �= Kc, we also have c1 ∝ (K0 − Kc) = − J

kT 2
c
(T − Tc) · · · �= 0.

This increases with each application of the RG transformation, and thus leads
away from the fixed point (K∗

c , L
∗
c) (Fig. 7.9), so that the flow runs either

to the low-temperature fixed point (for T < Tc) or to the high-temperature
fixed point (for T > Tc).

Now we may determine the critical exponent ν for the correlation length,
beginning with the recursion relation

(K −Kc)′ = λ1(K −Kc) (7.3.26)

and writing λ1 as a power of the new length scale

λ1 = (
√

2)
y1

. (7.3.27)

For the exponent y1 defined here, we find the value
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y1 = 2
logλ1

log 2
= 1.566 . (7.3.28)

From ξ′ = ξ/
√

2 (Eq. (7.3.17)), it follows that (K ′−Kc)
−ν = (K−Kc)

−ν
/
√

2,
i.e.

(K ′ −Kc) = (
√

2)
1
ν (K −Kc) . (7.3.29)

Comparing this with the first relation (7.3.26), we obtain

ν =
1
y1

= 0.638 . (7.3.30)

This is, to be sure, quite a ways from 1, the known exact value of the two-
dimensional Ising model, but nevertheless it is larger than 0.5, the value
from the molecular-field approximation. A considerable improvement can be
obtained by extending the recursion relation to several coupling coefficients.

Let us now consider the effect of a finite magnetic field h (including the
factor β). The recursion relation can again be established intuitively. The
field h acts directly on the remaining spins, as well as a (somewhat underes-
timated) additional field Kh which is due to the orienting action of the field
on the eliminated neighboring spins, so that all together we have

h′ = h + Kh . (7.3.31)

The fixed point value of this recursion relation is h∗ = 0. Linearization around
the fixed point yields

h′ = (1 + K∗)h =
4
3
h ; (7.3.32)

thus the associated eigenvalue is

λh =
4
3
. (7.3.33)

K0−Kc (or T −Tc ) and h are called the relevant “fields”, since the eigenval-
ues λ1 and λh are larger than 1, and they therefore increase as a result of the
renormalization group transformation and lead away from the fixed point. In
contrast, c2 is an “irrelevant field”, since |λ2| < 1, and therefore c2 becomes
increasingly smaller with repeated RG transformations. Here, “fields” refers
to fields in the usual sense, but also to coupling constants in the Hamilto-
nian. The structure found here is typical of models which describe critical
points, and remains the same even when one takes arbitrarily many coupling
constants into account in the transformation: there are two relevant fields
(T − Tc and h, the conjugate field to the order parameter), and all the other
fields are irrelevant.
We add a remark concerning the flow diagram 7.9. There, owing to the negative sign
of λ2, only every other point is shown. This corresponds to a twofold application of
the transformation and an increase of the lattice constant by a factor of 2, as well as
λ1 → λ2

1, λ2 → λ2
2. Then the second eigenvalue λ2

2 is also positive, since otherwise
the trajectory would move along an oscillatory path towards the fixed point.



356 7. Phase Transitions, Renormalization Group Theory, and Percolation

7.3.4 Scaling Laws

Although the decimation procedure described in Sect. 7.3.3 with only a few
parameters does not give quantitatively satisfactory results and is also un-
suitable for the calculation of correlation functions, it does demonstrate the
general structure of RG transformations, which we shall now use as a starting
point for deriving the scaling laws.

A general RG transformation R maps the original Hamiltonian H onto a
new one,

H′ = RH . (7.3.34)

This transformation also implies the rescaling of all the lengths in the prob-
lem, and that N ′ = Nb−d holds for the number of degrees of freedom N in d
dimensions (here, b =

√
2 for the decimation transformation of 7.3.1).

The fixed-point Hamiltonian is determined by

R(H∗) = H∗ . (7.3.35)

For small deviations from the fixed-point Hamiltonian,

R(H∗ + δH) = H∗ + L δH ,

we can expand in terms of the deviation δH. From the expansion, we obtain
the linearized recursion relation

LδH = δH′ . (7.3.36a)

The eigenoperators δH1, δH2, . . . of this linear transformation are determined
by the eigenvalue equation

LδHi = λiδHi . (7.3.36b)

A given Hamiltonian H, which differs only slightly from H∗, can be repre-
sented by H∗ and the deviations from it:

H = H∗ + τδHτ + hδHh +
∑
i≥3

ciδHi , (7.3.37)

where δHτ and δHh denote the two relevant perturbations with

|λτ | = byτ > 1 , |λh| = byh > 1 ; (7.3.38)

they are related to the temperature variable τ = T−Tc

Tc
and the external

field h, while |λj | = byj < 1 and thus yj < 0 for j ≥ 3 are connected with
the irrelevant perturbations.11 The coefficients τ, h, and cj are called scaling

11 Compare the discussion following Eq. (7.3.33). The (only) irrelevant field there
is denoted by c2. In the following, we assume that λi ≥ 0.
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fields. For the Ising model, δHh =
∑

l σl. Denoting the initial values of the
fields by ci, we find that the free energy transforms after l steps to

FN (ci) = FN/bdl(ciλ
l
i) . (7.3.39a)

For the free energy per spin,

f(ci) =
1
N

FN (ci) , (7.3.39b)

we then find in the linear approximation

f(τ, h, c3, . . .) = b−dlf
(
τbyτ l, hbyhl, c3b

y3l, . . .
)
. (7.3.40)

Here, we have left off an additive term which has no influence on the following
derivation of the scaling law; it is, however, important for the calculation of
the free energy. The scaling parameter l can now be chosen in such a way
that |τ |byτ l = 1, which makes the first argument of f equal to ±1. Then we
find

f(τ, h, c3, . . .) = |τ |d/yτ f̂±
(
h|τ |−yh/yτ , c3|τ ||y3|/yτ , . . .

)
, (7.3.40′)

where f̂±(x, y, . . .) = f(±1, x, y, . . .) and yτ , yh > 0, y3, . . . < 0. Close to
Tc, the dependence on the irrelevant fields c3, . . . can be neglected, and
Eq. (7.3.40′) then takes on precisely the scaling form (Eq. 7.2.7), with the
conventional exponents

βδ = yh/yτ (7.3.41a)

and

2 − α =
d

yτ
. (7.3.41b)

Taking the derivative with respect to h yields

β =
d− yh

yτ
and γ =

d− 2yh

yτ
. (7.3.41c,d)

We have thus derived the scaling law, Eq. (7.2.7), within the RG theory for
fixed points with just one relevant field, along with the applied magnetic field
and the irrelevant operators. Furthermore, the dependence on the irrelevant
fields c3, . . . gives rise to corrections to the scaling laws, which must be taken
into account for temperatures outside the asymptotic region.

In order to make the connection between yτ and the exponent ν, we recall
that l iterations reduce the correlation length to ξ′ = b−lξ, which implies that
(τbyτ l)−ν = b−lτ−ν and, as a result,

ν =
1
yτ

(7.3.41e)



358 7. Phase Transitions, Renormalization Group Theory, and Percolation

Fig. 7.10. The critical hypersur-
face. A trajectory within the crit-
ical hypersurface is shown as a
dashed curve. The full curve is a
trajectory near the critical hyper-
surface. The coupling coefficients
of a particular physical system as
a function of the temperature are
indicated by the long-dashed curve

(cf. Eq. (7.3.30) for the two-dimensional Ising model). From the existence of
a fixed-point Hamiltonian with two relevant operators, the scaling form of
the free energy can be derived, and it is also possible to calculate the critical
exponents. Even the form of the scaling functions f̂ and m̂ can be computed
with perturbation-theoretical methods, since the arguments are finite. A sim-
ilar procedure can be applied to the correlation function, Eq. (7.2.12b′). At
this point it is important to renormalize the spin variable, σ′ = bζσ, whereby
it is found that setting the value

ζ = (d− 2 + η)/2 (7.3.41f)

guarantees the validity of (7.2.13) at the critical point.
We add a few remarks about the generic structure of the flow diagram in

the vicinity of a critical fixed point (Fig. 7.10). In the multidimensional space
of the coupling coefficients, there is a direction (the relevant direction) which
leads away from the fixed point (we assume that h = 0). The other eigen-
vectors of the linearized RG transformation span the critical hypersurface.
Further away from the fixed point, this hypersurface is no longer a plane,
but instead is curved. The trajectories from each point on the critical hyper-
surface lead to the critical fixed point. When the initial point is close to but
not precisely on the critical hypersurface, the trajectory at first runs parallel
to the hypersurface until the relevant portion has become sufficiently large
so that finally the trajectory leaves the neighborhood of the critical hyper-
surface and heads off to either the high-temperature or the low-temperature
fixed point. For a given physical system (ferromagnet, liquid, . . .), the param-
eters τ, c3, . . . depend on the temperature (the long-dashed curve in Fig. 7.10).
The temperature at which this curve intersects the critical hypersurface is
the transition temperature Tc.

From this discussion, the universality properties should be apparent. All
systems which belong to a particular part of the parameter space, i.e. to the
region of attraction of a given fixed point, are described by the same power
laws in the vicinity of the critical hypersurface of the fixed point.




